снком. 5989

GASCHROMATOGRAPHIE*

V. DIE BEZIEHUNG ZWISCHEN DEN ELUTIONSDATEN UND DEM MOLVOLUMEN

MILAN WURST ** UND JAROSLAV CHURAČEK

Ostböhmische Chemiewerke Synthesia, VEB, Werk Kolin und chemisch-technologische Hochschule, Pardubice (Tschechoslowakei)

(Eingegangen am 10. November 1971; geänderte Fassung am 18. Februar 1972)

SUMMARY

Gas chromatography. V. The relationship between retention data and molar volume

A simple relationship, which could be used for the correlation and identification of organic and organosilicon materials in the analysis of mixtures was derived from the laws for the chromatographic separation of compounds. The logarithm of the retention data for members of a homologous series of organic compounds (those materials which have the same structure but contain different numbers of the same organic groups or halogen atoms, or organic compounds with similar structural properties (halogenorganic compounds)) is linearly proportional to the molar volume

$$\log V_g = V^M \cdot k_1 + k_2$$

where V_{σ} is specific retention volume, V_{M} is molar volume, and k_{1} , k_{2} are constants. The graphic representation of this relationship is a straight line whose slope is characteristic for each individual organic and organosilicon group of compounds. This relationship was verified with organic and organosilicon compounds. The relationship was applied to the gas chromatographic separation of the low-molecular-weight organosilicon compounds, for the purpose of identification.

EINLEITUNG

Bei Analyse der Gemische von organischen Stoffen durch gaschromatographische Methode werden zur Identifizierung von Stoffen im Gemisch jene Korrelationsmethoden angewendet, die sehr einfach sind und deshalb oft benutzt werden.

Auf Grund von Gesetzmässigkeiten, nach denen sich die Stoffe bei chromatographischer Trennung richten, leiteten einige Autoren einfache Beziehungen ab, die zur Identifizierung von unbekannten Stoffen in analysierten Gemischen angewendet werden. James und Martin² führten in ihrer Mitteilung an, dass der Logarithmus von Elutionsdaten der Glieder von strukturell gleichen homologen Reihen der Anzahl von Kohlenstoffen im Molekül linear proportional ist. Borer und Philips³ und Wurst⁴ benutzten die angeführte Beziehung für siliziumorganische Verbindungen

^{*}IV. Mitteilung, siehe Lit. 1. ** Gegenwärtige Addresse: Tschechoslowakische Akademie der Wissenschaften, Institut für Mikrobiologie, Praha, Tschechoslowakei.

mit einer Siliziumanzahl grösser als eins. Andere Autoren benutzten zur Identifizierung der Glieder homologer Reihen von organischen Verbindungen die Abhängigkeiten des Logarithmus des Elutionsvolumens vom Siedepunkt⁵ oder vom Molekulargewicht^{6,7}. Die weiteren gültigen Beziehungen, die bei gaschromatographischer Analyse auch zur Identifizierung benutzt werden, sind die Abhängigkeit des Logarithmus des Elutionsvolumens vom reziproken Wert absoluter Temperatur^{8,9}, ferner die Beziehung zwischen den Elutionsvoluminas homologer Glieder der Gruppe von Stoffen in zwei verschiedenen stationären Phasen^{10,11}. Eine weitere minder bekannte Möglichkeit ist die Identifizierung von Stoffen unter Anwendung der Beziehung zwischen dem Logarithmus von Elutionsdaten und molekularer Refraktion^{4,12} oder molekularem Parachor¹³.

Aus den genannten Beziehungen folgt, dass der Logarithmus von Elutionsdaten der Glieder homologer Reihen von organischen Stoffen linear abhängig ist von der Zunahme irgendeiner additiven Eigenschaft im Molekül. Im Sinne der Kopp'schen Regel besitzt unter korrespondierenden Bedingungen das Molvolumen von organischen Stoffen additiven Charakter

$$V^{M} = \frac{M}{d} \tag{I}$$

wobei $V^M =$ Molvolumen, M = Molekulargewicht und d = Dichte. Auf Grund empirischer Beziehung zwischen der Oberflächenspannung und Dichte führte Sugden die Grösse ein, die zum Vergleich der Molvolumina flüssiger Stoffe, unabhängig von der Temperatur bestimmt wurde, und nannte sie Parachor¹⁴. Eine neue Einsicht in das Molvolumen und den Parachor, als die überlieferte, brachten die Arbeiten von Exner¹⁵. Der additive Charakter des Molvolumens ist bei konstanter Temperatur viel besser erfüllt als beim Siedepunkt jedes einzelnen Stoffes. Die Genauigkeit additiver Eigenschaften beim Molvolumen ist stark von der Struktur abhängig und bei den einfachsten Strukturen ist sie relativ gross. Bei Einschätzung der Bedeutung des Parachors als additive Grösse durch Vergleich mit dem Molvolumen ergab sich, dass die Genauigkeit additiver Eigenschaften beim Parachor nicht allgemein grösser ist, sondern im Gegenteil bei den meisten Stoffklassen merklich niedriger.

Auf Grund von gewonnenen Erkenntnissen wurde eine einfache Beziehung abgeleitet zwischen dem Logarithmus von Elutionsdaten und dem Molvolumen, die bei Analyse mittels gaschromatographischer Methode zur Identifizierung von Stoffen in getrennten Gemischen anwendbar ist.

$$\log V_{\bullet} = \frac{V_i^M (\delta_L^2 - 2\delta_i \delta_L)}{2.3 RT_i} + \text{Konst}$$
 (2)

wobei V_g = spezifisches Elutionsvolumen, V_t^M = Molvolumen des Stoffes i, δ_i = Löslichkeitsparameter des gelösten Stoffes, δ_L = Löslichkeitsparameter des Lösungsmittels, R = Konstante und T = absolute Temperatur.

Der Logarithmus von Elutionsdaten (Elutionsvolumen, Zeit und Verhältnis) der Glieder der homologen Reihen von organischen Stoffen, oligomeren Reihen von niedermolekularen Organosiloxanen, organischen und siliziumorganischen strukturell gleichen Stoffen, die sich durch die Zahl von gleichen Gruppen oder Halogenatomen unterscheiden, ferner auch von strukturell gleichen Stoffen, die sich in ihren Eigen-

schaften ähneln (organische Halogene) ist dem Molvolumen linear proportional. Durch graphische Darstellung dieser Abhängigkeit (2) erhält man eine Gerade, deren Richtung charakteristisch für jede einzelne Gruppe von organischen und siliziumorganischen Stoffen ist.

EXPERIMENTELLER TEIL

Die Gültigkeit der angeführten linearen Abhängigkeit des Logarithmus von Elutionsdaten von dem Molvolumen wurde teils an einer ganzen Reihe der schon veröffentlichten Elutionsdaten von verschiedenen Gruppen organischer Stoffe, teils durch experimentelle Arbeit nachgeprüft. Zur Nachprüfung wurden die Elutionsverhältnisse von aliphatischen und aromatischen KW-Stoffen, aliphatischen primären Alkoholen, Aldehyden, Ketonen, Äthern und Estern angewendet, die von Tenney¹6 bestimmt wurden. Thompson u. Mittarb. haben eine Reihe von Elutionsdaten von halogenierten aliphatischen aromatischen und auch alizyklischen KW-Stoffen gemessen¹7. Diese Elutionsdaten wurden auch zur Nachprüfung der angeführten Abhängigkeit (2) angewendet. Ferner wurden zur Nachprüfung auch die Elutionsdaten unserer Arbeit angewendet, die schon früher veröffentlicht wurde, über die Trennung des Gemisches von aliphatischen Aminen¹8. Die Beziehung (2) wurde experimentell nachgeprüft und praktisch bei Trennung und Bestimmung von verschiedenen Arten des Gemisches von niedermolekularen siliziumorganischen Verbindungen angewendet.

Die Analyse der Gemische von niedermolekularen siliziumorganischen Verbindungen mittels Chromatographie wurde am Chromatographen des Typus D6 von der Firma Griffin & George Ltd., England, durchgeführt. Die Länge der chromatographischen Säule betrug 2 m und ihr Innendurchmesser 4 mm. Die Füllung der Säule hatte ein Gewicht von 12.8 g. Als Träger der stationären Phase wurde Celite 545 (Hersteller Johns-Manville, V.S.A.) mit der Korngrösse von 0.12-0.15 mm angewendet, mit dem Silikon-Elastomer (Lukopren G 1000, Hersteller VCHZ Synthesia, VEB, Werk Kolín) imprägniert im Verhältnis I g der stationären Phase zu Io g des Trägers. Die Temperatur der chromatographischen Säule betrug bei Trennung des Gemisches von Alkylchlorsilanen 40° und Phenylchlorsilanen 165°. Die Elutionsdaten von Alkylalkoxysilanen wurden bei 40° und 70° bestimmt, die von Tetraalkoxysilanen bei 140° und die von Phenylalkoxysilanen bei 165°. Die Gemische von linearen und zyklischen Dimethyl- und Methylvinylsiloxanen wurden bei 190° getrennt, verzweigte Methylsiloxane und lineare Methylhydrosiloxane bei 120° und Vinylethoxysiloxane und Methylphenylsiloxane bei 165°. Die bewegliche Phase stellte Stickstoff dar mit der Durchflussgeschwindigkeit von 60 ml/min. Dosierte Mengen von flüssigen Proben -4, 2, 1 und 0.5 \(\mu \) l — wurden in die chromatographische Kolonne mit spezieller Dosiervorrichtung vom Injektionstypus von der obenangeführten Firma eingespritzt.

Zur Veröffentlichung von Elutionscharakteristiken von niedermolekularen Verbindungen wurden die angeordneten Elutionsindexe I_{Si} aus dem schon früher veröffentlichten Bericht angewendet¹⁰. Die in Graphiken benutzten Elutionsdaten wurden durch Elutionsverhältnisse $r_{1,2}$ und Elutionsindexe I_{Si} ausgedrückt. Die Elutionsindexe I_{Si} von niedermolekularen siliziumorganischen Verbindungen gemeinsam mit Molekulargewichten, Dichten und Molvolumina sind gruppenweise in der Tabellen I-V angeführt. Die meisten Werte der Dichte und Molekulargewichte

sind der Literatur²⁰ entnommen. Die Molvolumina der angeführten Verbindunger wurden nach Beziehung (I) berechnet.

ERGEBNISSE UND DISKUSSION .

Organische und siliziumorganische Verbindungen, bei denen die abgeleitete Gleichung 2 experimentell nachgeprüft wurde, sind in mehrere Gruppen zu trennen Die erste Gruppe sind die Organochlorsilane, die dadurch charakterisier

TABELLE I
ALKYL- UND PHENYLCHLORSILANE

Verbindung	MolGew.	Dichte bei 20°	Mol- volumen	Elutions- index (I _{Si})
Dichlorsilan	101.0	1.174ª	86.0ª	0.75ª
Tetramethylsilan	88.2	0.6461	136.2	1,00
Trichlorsilan	135.5	1.3417	0.101	1.10
Dimethylchlorsilan	94.0	-		1.33
Methyldichlorsilan	115.0	1.1077	103.8	1.33
Siliziumtetrachlorid	169.9	1.481	114.7	1.39
Trimethylchlorsilan	108.7	0.8580	126.7	1.39
Methyltrichlorsilan	149.5	1.275	117.3	1.62
Dimethyldichlorsilan	129.1	1.0745	120.2	1.62
Ethyldichlorsilan	129.1	1.0849	119.0	1.67
Methylvinyldichlorsilan	141.1	r.0868	129.8	2.00
Vinyltrichlorsilan	161.5	1.2426	130.0	2.00
(Chlormethyl)trimethylsilan	122.7	o.8861	138.4	2.05
Methylethyldichlorsilan	143.1	1.0630	134.6	2.06
Ethyltrichlorsilan	163.5	1.2373	132.1	2.04
Propyldichlorsilan	143.1	1.0655	134.3	2.088
(Chlormethyl)dimethylchlorsilan	143.1	1.0865	131.7	2.12ª
Propyltrichlorsilan	177.6	1.1851	149.9	2.53
Methylpropyldichlorsilan	157.1	1.0383	151.3	2.52
Diethyldichlorsilan	157.1	1,0504	149.6	2.55
(Dichlormethyl) trimethylsilan	157.1	1.0395	151.1	3.19
Triethylchlorsilan	150.7	0.8968	168.0	2.91
Butyltrichlorsilan	191.5	1.1608	165.0	2.98
(Dichlormethyl)dimethylchlorsilan	177.6	1.2360	143.6	2.87
Tetraethylsilan	144.3	0.7658	188.6	2.99
Dipropyldichlorsilan	185.2	1.0174	181.9	3.47ª
Tripropylchlorsilan	192.8	0.8821	218.6	4.54 th
Tetrapropylsilan	200.4	0.7872	254.6	5.00%
Phenyldichlorsilan	177.1	1.2115	146.2	4.51
Phenyltrichlorsilan	211.6	1.342	159.9	5.10
Methylphenyldichlorsilan	191.1	1.1866	161.0	4.88
Ethylphenyldichlorsilan	205.2	1.1837	173.4	5.38
Methyl(chlorphenyl)dichlorsilan	225.6	1.3017	173.3	5.73
(Chlorphenyl)trichlorsilan	246.0	1.4316	171.8	5.95
Methyl(dichlorphenyl)dichlorsilan	260.0	1.4185	183.3	6.600
(Dichlorphenyl) trichlorsilan	280.5	1.4820	189.3	6.91
Methyldiphenylchlorsilan	232.8	1.1277	206.4	7.59
(Trichlorphenyl)trichlorsilan	314.9	1.5651	201.2	7.69
Diphenyldichlorsilan	253.2	1.2216	207.3	8.02
(Tetrachlorphenyl)trichlorsilan	349.4	1.621	215.5	8.64
Methyltriphenylsilan	274.4	1.0888	2528	10.38
Triphenylchlorsilan	294.9	1.161ª	254 ⁸	10.98

[•] Werte, die durch Korrelation von Beziehung (2) gewonnen wurden.

J. Chromatogr., 70 (1972) 1-12

GASCHROMATOGRAPHIE. V.

werden, dass sie im Molekül ein Siliziumatom besitzen. Die Struktur dieser Stoffe ist dieselbe. Sie wird durch das zentrale Siliziumatom gebildet, an die eine Anzahl von Chloratomen und organischen Gruppen, z.B. Alkyl-, Phenyl- u.ä., gebunden ist. Interessant ist der Vergleich der obenangeführten Abhängigkeit (2) bei den ersten Gliedern der Gruppe von Alkylchlorsilanen.

Bei Methylchlorsilanen, in der Reihe von Tetramethylsilan zum Methyltrichlorsilan, nimmt das Molvolumen bei zunehmender Anzahl von Chloratomen, zunehmendem Molekulargewicht und zunehmender Dichte jedoch ab. Die Werte der Elutionsdaten von Dimethyldichlorsilan und Methyltrichlorsilan sind gleich und die des Trimethylchlorsilan ist etwas niedriger. Die Abhängigkeit des Logarithmus der Elutionsdaten von dem Molvolumen erweist sich graphisch als Senkrechte zu anderen Geraden (Tabelle I, Fig. 2).

Der Wert des Molvolumens nimmt bei Äthylchlorsilanen mit steigender Anzahl von Äthylgruppen zu, d.h. durch gleichzeitige Abnahme der Anzahl von Chloratomen im Molekül in der Reihe von Äthyltrichlorsilan zu Tetraäthylsilan, das Molekulargewicht und die Dichte nehmen jedoch ab. Mit zunehmendem Molvolumen nimmt auch der Wert von Elutionsdaten zu. Die Anzahl von Äthylgruppen übt einen entscheidenden Einfluss auf die Zunahme des Molvolumens aus, die Grösse des Molekulargewichtes und der Dichte beeinflusst die Zunahme von Chloratomen (Tabelle I).

Das Molekulargewicht nimmt bei Propylchlorsilanen mit zunehmender Anzahl von Propylgruppen zu, die Dichte nimmt zwar ab, jedoch auch das Molvolumen nimmt zu. Die Elutionswerte nehmen selbstverständlich mit steigenden Werten des Molekulargewichtes und des Molvolumens zu. Die steigende Anzahl von Alkylgruppen beeinflusst bei Alkylchlorsilanen mit dem Alkyl grösser als Äthyl schon wesentlich die Zunahme von Werten des Molekulargewichtes, des Molvolumens. Die Anzahl von Chloratomen beeinflusst im Gegenteil die Dichte von Alkylchlorsilanen. Mit zunehmender Anzahl von Chloratomen nimmt auch der Wert der Dichte zu (Tabelle I).

Die Zunahme des Molekulargewichtes, Molvolumens und der Elutionsdaten von Phenylchlorsilanen wird wesentlich durch die Anzahl von Phenylgruppen beeinflusst, die Zunahme der Dichte durch die Anzahl von Chloratomen (Tabelle I).

Zur zweiten Gruppe gehören strukturell gleiche, halogenierte organische und siliziumorganische Verbindungen, die im Molekül die Halogenatome entweder an organische Gruppe gebunden enthalten oder Chloratome direkt an Silizium. An die gleichbleibende organische Gruppe und Silizium sind dieselbe Anzahl von Halogenatomen verschiedener Art gebunden oder verschiedene Anzahl von Halogenatomen gleicher Art. Diese Gruppe wird durch Chlorsilane, chlorierte Alkyl-, Phenylchlorsilane und Alkylalkoxysilane vertreten, ferner durch halogenierte aliphatische, alizyklische und aromatische KW-Stoffe.

Die Grösse der Werte des Molekulargewichtes, der Dichte, des Molvolumens, und folglich auch der Elutionsdaten von Chlorsilanen und chlorierten Tetramethylsilanen, Trimethylchlorsilanen, Trimethylisopropoxysilanen, Methyltrimethoxysilanen, Phenyltrichlorsilanen und Methylphenyldichlorsilanen ist nur von der Anzahl der Chloratome abhängig, die entweder an den Alkyl- oder Benzolkern gebunden sind (Tabellen I und II).

Die Zunahme von Werten des Molekulargewichtes, der Dichte, des Molvolumens und der Elutionsdaten von halogenierten Hexanen, Zyklohexanen, Benzolen und

TABELLE II
ALKYL- UND PHENYLALKOXYSILANE

Verbindung	MolGew.	Dichte bei 20°	Mol- volumen	Elutions- index (I _{St})
Trimethylmethoxysilan	104.2	0.756	137.8	1.36
Trimethylethoxysilan	118.3	0.7573	156.2	1.70
Dimethyldimethoxysilan	120.2	0.8646	138.9	1.75a
Trimethoxysilan	122.1	0.800a	142 ⁿ	1.87
Trimethylisopropoxysilan	132.3	0.755	175.2	1.87
Methyldiethoxysilan	134.3	0.829	162.0	2.07
Trimethylpropoxysilan	132.3	0.7682	172.2	2.10
Methyltrimethoxysilan	136.2	0.9548	142.8	2.14
Dimethyldiethoxysilan	148.3	0.8395	176.7	2.35
Tetramethoxysilan	152.2	1.034	147.2	2.43
Trimethylbutoxysilan	146.3	0.7774	188.2	2.53
Triethoxysilan	164.3	0.8753	187.7	2.75
Trimethyl-1-chlorisopropoxysilan	166.7	0.9235	179.7	2.94
Methyltriethoxysilan	178.3	0.8948	199.5	3.04
Dimethyldipropoxysilan	176.3	0.8414	209.5	3.158
(Chlormethyl)trimethoxysilan	170.6			3.22
Tetraethoxysilan	208.3	0.9355	223.I	3.61
Trimethyl-1,2-dichlorisopropoxysilan	201.2	1.0762	186.9	3.93
Tetraisopropoxysilan	264.4	0.8772	301.4	3.92
Dimethyldibutoxysilan	204.4	0.8431	242.4	4.00
Tripropoxysilan	206.4	0.885	233.2	ġ.63ª
Methyltripropoxysilan	220.4	0.8831	249.6	4.20ª
(Dichlormethyl) trimethoxysilan	205.0			4.35ª
Methyltributoxysilan	262.5	0.8775	299.I	5.45ª
Tetrapropoxysilan	264.4	0.9158	288.7	5.21
Tetraisobutoxysilan	320.6	0.8880	361.0	5.87
Tetrabutoxysilan	320,6	0.8990	356.6	6.97
Methylphenyldimethoxysilan	182.3	0.9934	183.5	4.67
Phenyltrimethoxysilan	198.3	1.064	186.4	4.97
Phenyltriethoxysilan	240.4	0.9961	241.3	5.71
Diphenyldimethoxysilan	244.4	1.0771	226.9	7.46
Diphenyldiethoxysilan	272.4	1.0329	363.7	7.82
Triphenylmethoxysilan	290.4	1.050	277ª	10.0
Triphenylethoxysilan	304.5	1.068	285	10.05

*Siche Tabelle I.

Toluolen und Naphtholen wird durch die Art des Halogens beeinflusst¹⁷. Die Werte der angeführten physikalischen Grössen und der Elutionsdaten nehmen selbstverständlich zu in der Richtung von fluorierten Verbindungen zu den jodhaltigen Verbindungen (Fig. 1). Die Zunahme und Abnahme des Molekulargewichtes, der Dichte und des Molvolumens, und folglich auch der Elutionswerte, wird durch die Anzahl von Atomen derselben Art des Halogens oder die Art des Halogens beeinflusst.

Die dritte Gruppe ist der ersten und zweiten ähnlich. In dieser Gruppe sind die Organosilane und die im Molekül ein Heteroatom enthaltenden organischen Stoffe eingereiht. Die Struktur der Verbindungen ist dieselbe. Sie wird durch das Zentral-* atom gebildet, beispielsweise durch Silizium, Stickstoff u.ä., an das eine verschiedene Anzahl von gleichen oder auch von verschiedenen organischen Gruppen, z.B. Alkyl-, Phenyl-, Alkoxy- u.ä., gebunden wird. Das Zentralatom bleibt unverändert und veränderlich ist die Anzahl der einzelnen Arten der organischen Gruppen. Der Wert

des Molekulargewichtes, der Dichte, des Molvolumens von Methylmethoxy-, Methylethoxy-, Methylpropoxy- und Methylbutoxysilanen, ferner der von Tetraalkoxysilanen, Phenylmethoxy- und Phenylethoxysilanen nimmt mit der Anzahl der organischen an das Zentralatom gebundenen Gruppen zu, als Folge der Zunahme von

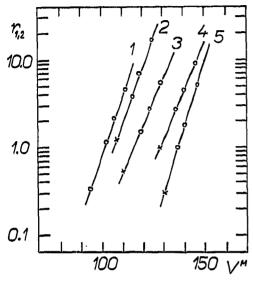


Fig. 1. Die Abhängigkeit des Logarithmus von Elutionsverhältnissen der halogenierten KW-Stoffe vom dem Molvolumen. i = Halogenierte Benzole; 2 = halogenierte Toluole; 3 = halogenierte Zyklohexane; 4 = halogenierte Naphthaline; 5 = halogenierte Hexane; x = ergänzte Werte.

Kohlenstoff-, Wasserstoff- und Sauerstoffatomen. Die Elutionsdaten von Methylalkoxysilanen nehmen mit zunehmender Anzahl von Alkoxygruppen gleicher Art zu, auch mit Veränderung der Alkoxygruppe von Methoxy- zur Butoxygruppe (Tabelle II). Bei Phenylalkoxysilanen wird die Zunahme des Molekulargewichtes, der Dichte, des Molvolumens und der Elutionsdaten durch die Anzahl von Phenylgruppen, minder beeinflusst als durch die Art der Alkoxygruppe (Tabelle II).

Die Anzahl von Alkylgruppen gleicher Art und unterschiedliche Art des Alkyls am Stickstoff vergrössert das Molekulargewicht, die Dichte und das Molvolumen und verlängert die Elutionszeiten von aliphatischen Aminen¹⁸.

Die vierte Gruppe ist teils durch homologe Reihen von organischen Stoffen vertreten, teils durch niedermolekulare siliziumorganische Verbindungen, die im Molekül mehrere Siliziumatome besitzen. Diese Gruppe von siliziumorganischen Stoffen wird durch oligomere Reihen von verschiedenen Arten von Organosiloxanen repräsentiert. Mit zunehmendem Wert von Elutionsdaten der Glieder einzelner Reihen der linearen Methylhydro-, Dimethyl-, Methylvinyl-, Vinylethoxy-, Methylphenylsiloxane und der verzweigten Methylsiloxane, ferner der zyklischen Dimethyl- und Methylvinylsiloxane, nimmt die Anzahl von Silizium, Kohlenstoff, Wasserstoff und Sauerstoff in der Molekül zu und dadurch auch das Molekulargewicht, die Dichte und das Molvolumen. Die Zunahme des Moleküls bildet die Baustein-Grundeinheit, d.h. die bestimmte Anzahl von Siliziumatomen, Kohlenstoff-, Wasserstoff- und Sauerstoffatomen (Tabellen III-V). Eine regelmässig steigende Anzahl von Methylengruppen in aliphatischer Kette von organischen Substanzen¹⁶ versichert die Zunahme

TABELLE III
LINEARE UND VERZWEIGTE DIMETHYL- UND METHYLVINYLSILOXANE

Verbindung	MolGew.	Dichte bei 20°	Mol- volumen	Elutions index (I _{Si})
Hexamethyldisiloxan	162.4	0.7636	212.7	2,00
Oktamethyltrisiloxan	236.6	0.8200	228.5	3.00
Dekamethyltetrasiloxan	310.7	0.8536	364.0	4.00
Dodekamethylpentasiloxan	384.9	0.8753	439.7	5.00
Tetradekamethylhexasiloxan	459.0	0.8910	515.2	6.00
Hexadekamethylheptasiloxan	533.2	0.9012	591.7	7.00
Oktadekamethyloktasiloxan	607.3	0.9099	667.5	8.00
Eikosamethylnonasiloxan	681.5	0.9180	742.4	9.00
Dokosamethyldekasiloxan	755.7	0.9250	817.0	10.0
Tetrakosamethylundekasiloxan	829,8	0.930	892.3	0,11
Hexakosamethyldodekasiloxan	904.0	0.9314	970.6	12.0
1,1,1,3,5,5,5-Heptamethyl-3-vinyltrisiloxan	248.6	0.8265	300.8	3.74
1,1,1,3,5,7,7,7-Oktamethyl-3,5-divinyltetrasiloxan 1,1,1,3,5,7,9,9,9-Nonamethyl-3,5,7-trivinyl-	334.4	0.812 ⁿ	412ª	5.12
pentasiloxan 1,1,1,3,5,7,9,11,11,11-Dekamethyl-3,5,7,9-	420.6	0.825ª	512 ⁿ	6.45
tetravinylhexasiloxan 1,1,1,3,5,7,9,11,13,13,13-Undekamethyl	506.7	0.8284	612ª	7.74
3,5,7,9,11-pentavinylheptasiloxan 1,1,1,3,5,7,9,11,13,15,15,15-Dodekamethyl-	592.8	o.833ª	712n	9.08
3,5,7,9,11,13-hexavinyloktasiloxan 1,1,1,3,5,7,9,11,13,15,17,17,17-Tridekamethyl-	678.9	o.836ª	812 ⁿ	10.4
3,5,7,9,11,13,15-heptavinylnonasiloxan	765.1	0.839 ⁿ	912ª	11.7
1,1,1,3,5,5,5-Heptamethyltrisiloxan	222.4	0.8194	271.4	2.79
1,1,1,3,5,7,7,7-Oktamethyltetrasiloxan	282.6	0.8559	330.2	3.59
1,1,1,3,5,7,9,9,9-Nonamethylpentasiloxan	338.8	0.8806	384.6	4.35
1,1,3,3-Tetramethyl-1,3-divinyldisiloxan	186.4	0.811	229.8	3.42
1,1,3,5,5-Pentamethyl-1,3,5-trivinyltrisiloxan 1,1,3,5,7,7-Hexamethyl-1,3,5,7-tetravinyltetra-	272.4	0.826ª	330ª	4.66
siloxan	358.5	0.833ª	430 ⁿ	6.06
1,1,3,5,7,9,9:Heptamethyl-1,3,5,7,9-			• -	
pentavinylpentasiloxan 1,1,3,5,7,9,11,11-Oktamethyl-1,3,5,7,9,11-	444.6	o.838ª	530ª	7.31
hexavinylhexasiloxan 1,1,3,5,7,9,11,13,13-Nonamethyl-1,3,5,7,9,11,13-	530.7	0.842ª	630ª	8.67
heptavinylheptasiloxan 1,1,3,5,7,9,11,13,15,15-Dekamethyl-	8,616	0.845 ⁿ	730 ⁿ	9.92
1,3,5,7,9,11,13,15-oktavinyloktasiloxan	703.0	0.847 ^B	830ª	11.35
Methyltris(trimethylsiloxy)silan	310.7	0.8497	3 ⁶ 5.7	3.91
1,1,1,3,5,7,7,7,7-Oktamethyl-3,5-bis(trimethyl-siloxy)tetrasiloxan	458.8	0.893	513.8	5.77
1,1,1,3,5,7,9,9,9-Nonamethyl-3,5,7-tris				
(trimethylsiloxy)pentasiloxan	606.8	0.917	6624	7.58ª
Tetrakis(trimethylsiloxy)silan	384.9	0.8674	443.6	4.68
siloxy)tetrasiloxan	532.2			6.67

Siehe Tabelle I.

des Molekulargewichtes, der Dichte, des Molvolumens und folglich auch die der Elutionsdaten.

Die Abhängigkeit (2), graphisch dargestellt für Organochlorsilane (Fig. 2), Organosilane (Fig. 3), Organosiloxane (Fig. 4) und auch für halogenierte organische

TABELLE IV
ZYKLISCHE DIMETHYL- UND METHYLVINYLSILOXANE

Verbindung.	MolGew.	Dichte bei 20°	Mol- volumen	Elutions- index (I_{Si})
Hexamethylcyklotrisiloxan	222.5	0.945 ⁸	235ª	2.84
Oktamethylcyklotetrasiloxan	296.6	0.9561	310,2	3.84
Dekamethylcyklopentasiloxan	370.8	0.9593	386.5	4.74
Dodekamethylcyklohexasiloxan	445.0	0.9672	460.1	5.82
Tetradekamethylcykloheptasiloxan	519.1	0.9703	535.0	Ğ.75
Hexadekamethylcyklooktasiloxan	593.3	0.9721	O10a	7.73
Oktadekamethylcyklononasiloxan	667.4	0.974 ⁿ	685ª	8.69
Eikosamethylcyklodekasiloxan	741.6	0.9761	760 ⁿ	9.54
Dokosamethylcykloundekasiloxan	815.8	0.978a	835 ^a	10.4
1,3,5-Trimethyl-1,3,5-trivinylcyklotrisiloxan 1,3,5,7-Tetramethyl-1,3,5,7-tetravinylcyklo-	258.5	0.9669	267.3	4.42
tetrasiloxan 1,3,5,7,9-Pentamethyl-1,3,5,7,9-pentavinyl-	344.7	0.9875	349.I	5.62
cyklopentasiloxan 1,3,5,7,9,11-Hexamethyl-1,3,5,7,9,11-hexavinyl-	430.9	0.9943	433.4	6.82
cyklohexasiloxan 1,3,5,7,9,11,13-Heptamethyl-1,3,5,7,9,11,13-	517.0	1.0050	514.4	8.14
heptavinylcykloheptasiloxan	603.3	1.0128	596ª	9.47 ⁿ

^a Siehe Tabelle I.

TABELLE V LINEARE METHYLPHENYL- UND VINYLÄTHOXYSILOXANE

Verbindung	MolGew.	Dichte bei 20°	Mol- volumen	Elutions- index (I _{S1})
Vinyltriethoxysilan	190.3	0.9027	210.8	3.39
1,3-Divinyl-1,1,3,3-tetraethoxydisiloxan	306.5	0.9618	318.7	5.34
1,3,5-Trivinyl-1,1,3,5,5-pentaethoxytrisiloxan 1,3,5,7-Tetravinyl-1,1,3,5,7,7-hexaethoxytetra-	442.4	0.9891	427ª	7.05
siloxan	538.6	1.007ª	535 ⁿ	8.84
1,1,1,3,3-Pentamethyl-3-phenyldisiloxan	224.5	0.891	252.0	4.88
1,1,3,3-Tetramethyl-1,3-diphenyldisiloxan	286.4			7.87
1,1,1,3-Tetramethyl-3,3-diphenyldisiloxan	286.4			7.74

a Siehe Tabelle I.

Verbindungen derselben Struktur (Fig. 1), ist der Abhängigkeit des Logarithmus der Elutionsdaten von dem molekularen Parachor¹³ und von der molekularen Refraktion sehr ähnlich^{4,12}. Man kann sagen, dass additive Eigenschaften des Molvolumens unter konstanter Temperatur genau so gleich sind wie die des molekularen Parachors und der molekularen Refraktion. Durch Vergleich von beiden Grössen bei Identifizierung von unbekannten Stoffen erscheint die Additivität des Parachors zuweilen besser zu sein als die des Molvolumens. Das beeinflusst jedoch die Bestimmungsart von angeführten Grössen. Beim Molvolumen werden die Dichten der Stoffe in unserem Falle entweder von den in der Literatur angeführten experimentellen Werten oder

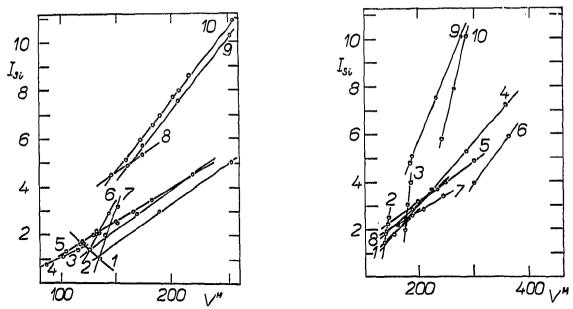


Fig. 2. Die Abhängigkeit der Elutionsindexe der Organochlorsilane vom Molvolumen. 1 = Methylchlorsilane; 2 = Tetraalkylsilane; 3 = Trialkylchlorsilane; 4 = Chlorsilane; 5 = Dialkyldichlorsilane und Alkyltrichlorsilane; 6 = chlorierte Trimethylchlorsilane; 7 = chlorierte Tetraalkylsilane; 8 = Alkylphenyldichlorsilane; 9 = Methylphenylchlorsilane; 10 = Phenylchlorsilane und chlorierte Phenylchlorsilane.

Fig. 3. Die Abhängigkeit der Elutionsindexe der Organosilane vom Molvolumen. 1 = Trimethylalkoxysilane; 2 = Methylmethoxysilane; 3 = chlorierte Trimethylisopropoxysilane; 4 = Methylethoxysilane und Tetraalkoxysilane; 5 = Methyltrialkoxysilane; 6 = Tetraisoalkoxysilane; 7 = Dimethyldialkoxysilane; 8 = Trialkoxysilane; 9 = Phenylmethoxysilane und Methylphenylmethoxysilane; 10 = Phenylethoxysilane.

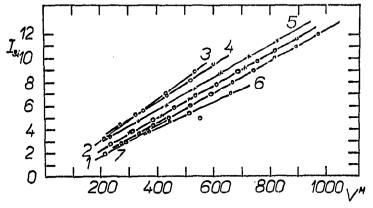


Fig. 4. Die Abhängigkeit der Elutionsindexe der Organosiloxane vom Molvolumen. I = Lineare Dimethylsiloxane; 2 = zyklische Dimethylsiloxane und lineare Methylvinylsiloxane; 3 = Vinylethoxysiloxane; 4 = zyklische Methylvinylsiloxane; 5 = lineare Methylvinylsiloxane (ein anderer Typ); 6 = verzweigte Methylsiloxane; 7 = lineare Methylhydrosiloxane.

von eigenen Messungen gewonnen; Molekulargewichte wurden durch Berechnung gewonnen. Die Werte von molekularen Parachoren wurden insgesamt aus Atomparachoren und strukturellen Parachoren berechnet¹³. Experimentelle Daten pflegen immer minder genau zu sein als die berechneten.

Die Abhängigkeit 2 wurde praktisch angewendet bei Identifizierung von

einigen höheren Gliedern der Reihen von Organosiloxanen. Alkylchlorsilane, Phenylchlorsilane und Alkylalkoxysilane, wurden im Gemisch mit anderen verwandten Stoffen bestimmt, da einige Verbindungen als isolierte reine Stoffe nicht zur Verfügung standen. So wurden die Elutionsindexe $I_{\rm Si}$ von einigen niedermolekularen siliziumorganischen Verbindungen bestimmt (Tabellen I–V). Bei der Beziehung 2 kann man von den Elutionsdaten einfach entweder die Dichte oder das Molekulargewicht des zu identifizierenden Stoffes berechnen. Bei Organosiloxan-Gemischen wurde eine Reihe von Werten von Molvolumina gewonnen und von diesen dann eine Reihe von Dichten der zu identifizierenden Stoffe (Tabelle III). Die Elutionsdaten von halogenierten aliphatischen, alizyklischen und aromatischen KW-Stoffen und aliphatischen Ketonen¹⁶ wurden mit den Elutionsverhältnissen einiger Stoffe ergänzt, die von den Autoren¹⁷ nicht angeführt werden und die durch Korrelation der obenangeführten Abhängigkeit 2 gewonnen wurden (Fig. I).

Die angeführten Erfahrungen wurden praktisch sehr gut bei chromatographischen Analysen der technischen Gemische von Vinylchlorsilanen, chlorierten Phenyltrichlorsilanen, Methylethoxysilanen, Vinylethoxysiloxanen (Fig. 5), verzweigten Methylsiloxanen²¹ u.ä. verwendet.

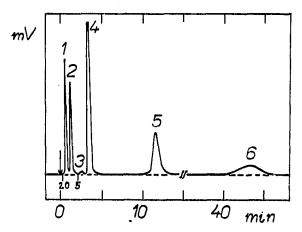


Fig. 5. Die Mischung von Vinylethoxysilanen. Silikon-Elastomer-Celite 545 (1:10); Temperatur der Kolonne, 165°; Trägergas, Stickstoff mit Durchflussgeschwindigkeit 60 ml/min. 1 = Äthylalkohol; 2 = Vinyltriethoxysilan; 3 = 1,1,3,3-Tetravinyl-1,3-diethoxydisiloxan; 4 = 1,3-Divinyl-1,1,3,3-tetraethoxydisiloxan; 5 = 1,3,5-Trivinyl-1,1,3,5,5-pentaethoxytrisiloxan; 6 = 1,3,5,7-Tetravinyl-1,1,3,5,7,7-hexaethoxytetrasiloxan.

Aus den Nachprüfungs- und Anwendungsbeispielen der abgeleiteten Beziehung 2 ergeben sich Vorteile bei Identifizierung von unbekannten Bestandteilen in Gemischen von organischen und siliziumorganischen Verbindungen mittels Gaschromatographie gegenüber den schon früher veröffentlichten Abhängigkeiten^{2–13}.

ZUSAMMENFASSUNG

Auf Grund von Gesetzmässigkeiten, nach denen sich die Stoffe bei chromatographischer Trennung richten, wurde eine einfache Beziehung abgeleitet, die zur Korrelation und Identifizierung von Verbindungen in analysierten Gemischen von organischen und siliziumorganischen Stoffen anwendbar ist.

Linear proportional dem Molvolumen ist der Logarithmus von Elutionsdaten

jener Glieder homologer Reihen von organischen Verbindungen, strukturell gleicher Stoffe, die sich durch die Anzahl gleicher organischer Gruppen oder Halogenatome unterscheiden, ferner auch von organischen strukturell gleichen Stoffen, die in ihren Eigenschaften ähnlich sind (halogenierte organische Verbindungen).

$$\log V_g = V^M \cdot k_1 + k_2$$

wobei $V_g =$ spezifisches Elutionsvolumen, $V^M =$ Molvolumen und $k_1, k_2 =$ Konstanten.

Durch graphische Darstellung dieser Abhängigkeit erhält man die Gerade, deren Richtung charakteristisch für jede einzelne Gruppe von organischen und siliziumorganischen Stoffen ist. Diese Abhängigkeit wurde an organischen und siliziumorganischen Verbindungen nachgeprüft. Die abgeleitete Beziehung wurde praktisch bei Analyse durch gaschromatographische Methode zur Identifizierung von niedermolekularen siliziumorganischen Verbindungen angewendet.

LITERATUR

- 1 M. WURST, Chem. Listy, 65 (1971) 268.
- 2 A. T. JAMES UND A. J. P. MARTIN, J. Biochem., 50 (1952) 679. 3 K. BORER UND C. S. G. PHILLIPS, Proc. Chem. Soc., (1959) 189.
- 4 M. Wurst, Collect. Czech. Chem. Commun., 29 (1964) 1458.
- D. H. DESTY UND B. H. F. WHYMAN, Anal. Chem., 29 (1957) 320.
- 6 J. Franc, K. Plaček und F. Mikeš, Collect. Czech. Chem. Commun., 32 (1967) 2242.
- 7 H. ROTZSCHE UND H. RÖSLER, Z. Anal. Chem., 181 (1961) 407.
- 8 J. Janák, Chem. Listy, 47 (1953) 464; Collect. Czech. Chem. Commun., 19 (1954) 684. 9 A. B. Littlewood, C. S. G. Phillips und D. T. Price, J. Chem. Soc., (1955) 1480.
- 10 A. T. JAMES, A. J. P. MARTIN UND G. SMITH, J. Biochem., 52 (1952) 238.
- II G. J. PIEROTI, C. H. DEAL, E. L. DERR UND P. E. PORTER, J. Amer. Chem. Soc., 78 (1956) 2989.
- 12 L. N. VOROBJEV, Collect. Czech. Chem. Commun., 27 (1962) 1045.
- 13 M. WURST, Mikrochim. Acta, (1966) 379.
- 14 S. J. Sugden, J. Chem. Soc., (1924) 1185; The Parachov and Valency, G. Routlegde and Sons, Ltd., London, 1930.
- 15 O. EXNER, Collect. Czech. Chem. Commun., 32 (1967) 1; 32 (1967) 24.
- 16 H. M. TENNEY, Anal. Chem., 30 (1958) 2.
- 17 C. J. THOMPSON, H. J. COLEMAN, C. C. WARD AND H. T. RALL, Anal. Chem., 34 (1962) 154.
- 18 J. FRANC UND M. WURST, Collect. Czech. Chem. Commun., 25 (1960) 2290.
- 19 M. WURST UND J. CHURACEK, Collect. Czech. Chem. Commun., 36 (1971) 3497.
- 20 V. BAŽANT, V. CHVALOVSKÝ UND J. RATHOUSKÝ, Organosilicon Compounds, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1965.
- 21 M. WURST, Chem. Prum., 22 (1972) 124.

J. Chromatogr., 70 (1972) 1-12